Pedestrian Spatial Self-organization According to its Nearest Neighbor Position
نویسندگان
چکیده
منابع مشابه
k-Nearest Neighbor Classification on Spatial Data
Classification of spatial data streams is crucial, since the training dataset changes often. Building a new classifier each time can be very costly with most techniques. In this situation, k-nearest neighbor (KNN) classification is a very good choice, since no residual classifier needs to be built ahead of time. KNN is extremely simple to implement and lends itself to a wide variety of variatio...
متن کاملThe Spatial Nearest Neighbor Skyline Queries
User preference queries are very important in spatial databases. With the help of these queries, one can found best location among points saved in database. In many situation users evaluate quality of a location with its distance from its nearest neighbor among a special set of points. There has been less attention about evaluating a location with its distance to nearest neighbors in spatial us...
متن کاملThe Islands Approach to Nearest Neighbor Querying in Spatial Networks
Much research has recently been devoted to the data management foundations of location-based mobile services. In one important scenario, the service users are constrained to a transportation network. As a result, query processing in spatial road networks is of interest. We propose a versatile approach to k nearest neighbor computation in spatial networks, termed the Islands approach. By offerin...
متن کاملApproximate Nearest Neighbor And Its Many Variants
This thesis investigates two variants of the approximate nearest neighbor problem. First, motivated by the recent research on diversity-aware search, we investigate the k-diverse near neighbor reporting problem. The problem is defined as follows: given a query point q, report the maximum diversity set S of k points in the ball of radius r around q. The diversity of a set S is measured by the mi...
متن کاملNearest Neighbor
Over the last decade, an immense amount of data has become available. From collections of photos, to genetic data, and to network traffic statistics, modern technologies and cheap storage have made it possible to accumulate huge datasets. But how can we effectively use all this data? The ever growing sizes of the datasets make it imperative to design new algorithms capable of sifting through th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transportation Research Procedia
سال: 2014
ISSN: 2352-1465
DOI: 10.1016/j.trpro.2014.09.033